题目内容
15.已知不重合的直线m、l和平面α、β,且m⊥α,l?β.给出下列命题,其中正确命题的个数是( )①若α∥β,则m⊥l;
②若α⊥β,则m∥l;
③若m⊥l,则α∥β;
④若m∥l,则α⊥β.
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 根据有关定理中的诸多条件,对每一个命题进行逐一进行是否符合定理条件去判定,将由条件可能推出的其它的结论也列举出来.
解答 解:若α∥β,且m⊥α⇒m⊥β,又l?β⇒m⊥l,所以①正确.
若α⊥β,且m⊥α⇒m∥β,又l?β,则m与l可能平行,可能异面,所以②不正确.
若m⊥l,且m⊥α,l?β⇒α与β可能平行,可能相交.所以③不正确.
若m∥l,且m⊥α⇒l⊥α又l?β⇒α⊥β,∴④正确.
故选:B.
点评 本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,属于中档题.
练习册系列答案
相关题目
7.对某班40名高中学生是否喜欢数学课程进行问卷调查,将调查所得数据绘制成二维条形图如图所示.
(Ⅰ)根据图中相关数据完成以下2×2列联表,并计算有多大把握认为性别与是否喜欢数学有关系?
(Ⅱ)从该班喜欢数学的女生中随机选取2人,参加学校数学兴趣课程班,已知该班女生A喜欢数学课程,求女生A被选中的概率.
参考公式:K2=$\frac{(a+b+c+d)(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
临界值附表:
(Ⅰ)根据图中相关数据完成以下2×2列联表,并计算有多大把握认为性别与是否喜欢数学有关系?
喜欢数学课程 | 不喜欢数学课程 | 总计 | |
男 | |||
女 | |||
总计 | 40 |
参考公式:K2=$\frac{(a+b+c+d)(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
临界值附表:
P(K2≥k0) | 0.5 | 0.4 | 0.25 | 0.15 | 0.1 | 0.01 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 6.635 |
10.曲线y=$\frac{1}{3}$x3在点(1,$\frac{1}{3}$)处的切线与直线x+y-3=0的夹角为( )
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
7.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;…第六组,成绩大于等于18秒且小于等于19秒.如图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,平均成绩为z,则从频率分布直方图中可分析出x、y、z的值分别为( )
A. | 0.9,35,15.86 | B. | 0.9,45,15.5 | C. | 0.1,35,16 | D. | 0.1,45,16.8 |
4.利用计算器算出自变量和函数值的对应值如表,则方程2x-x2=0的一个根所在区间为(1.8,2.2).
x | 0.2 | 0.6 | 1.0 | 1.4 | 1.8 | 2.2 | 2.6 | 3.0 | 3.4 | … |
y=2x | 1.149 | 1.516 | 2.0 | 2.639 | 3.482 | 4.595 | 6.063 | 8.0 | 10.556 | … |
y=x2 | 0.04 | 0.36 | 1.0 | 1.96 | 3.24 | 4.84 | 6.76 | 9.0 | 11.56 | … |