题目内容
已知p:x2-8x-20≤0,q:x2-2x+1-m2≤0(m>0),若p是q的必要不充分条件,求实数m的取值范围.
m≥9
解析
已知函数f(x)在区间(-∞,+∞)上是增函数,a,b∈R.(1)求证:若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b);(2)判断(1)中命题的逆命题是否正确,并证明你的结论.
已知集合A={x|x2-4mx+2m+6=0},B={x|x<0},若命题“A∩B=∅”是假命题,求实数m的取值范围.
已知命题:,命题:,若是的充分不必要条件,求实数的取值范围.
已知;,若是的必要非充分条件,求实数的取值范围.
已知命题p:方程2x2+ax-a2=0在[-1,1]上有解;命题q:只有一个实数x满足不等式x2+2ax+2a≤0,若命题“p∨q”是假命题,求a的取值范围.
已知命题方程在上有解;命题不等式恒成立,若命题“”是假命题,求的取值范围.
已知集合(1)能否相等?若能,求出实数的值,若不能,试说明理由?(2)若命题命题且是的充分不必要条件,求实数的取值范围.
令p(x):ax2+2x+1>0,若对任意x∈R,p(x)是真命题,则实数a的取值范围是 .