题目内容
已知函数f(x)=(2n-n2)x2n2-n,(n∈N*)在(0,+∞)是增函数.
(1)求f(x)的解析式;
(2)设g(x)=
(m>0),试判断g(x)在(0,+∞)上的单调性,并加以证明.
(1)求f(x)的解析式;
(2)设g(x)=
f2(x)+m2 |
f(x) |
由题意(1)
或
⇒
<n<2或∅;
∵n∈N*∴n=1⇒f(x)=x;
(2)g(x)=
=x+
设0<x1<x2,则g(x1)-g(x2)=…=
(x1x2-m2);
若0<x1<x2≤m,则x1x2<m2;若m≤x1<x2,则x1x2>m2;而x1x2>0,x1-x2<0
当0<x1<x2≤m时,g(x1)>g(x2);当m≤x1<x2时,g(x1)<g(x2)
因此,g(x)在(0,m]上单调递减;g(x)在[m,+∞)上单调递增;
|
|
1 |
2 |
∵n∈N*∴n=1⇒f(x)=x;
(2)g(x)=
x2+m2 |
x |
m2 |
x |
设0<x1<x2,则g(x1)-g(x2)=…=
x1-x2 |
x1x2 |
若0<x1<x2≤m,则x1x2<m2;若m≤x1<x2,则x1x2>m2;而x1x2>0,x1-x2<0
当0<x1<x2≤m时,g(x1)>g(x2);当m≤x1<x2时,g(x1)<g(x2)
因此,g(x)在(0,m]上单调递减;g(x)在[m,+∞)上单调递增;
练习册系列答案
相关题目