题目内容

已知函数f(x)=(2n-n2)x2n2-n,(n∈N*)在(0,+∞)是增函数.
(1)求f(x)的解析式;
(2)设g(x)=
f2(x)+m2
f(x)
(m>0)
,试判断g(x)在(0,+∞)上的单调性,并加以证明.
由题意(1)
2n-n2>0
2n2-n>0
2n-n2<0
2n2-n<0
1
2
<n<2或∅

∵n∈N*∴n=1⇒f(x)=x;
(2)g(x)=
x2+m2
x
=x+
m2
x

设0<x1<x2,则g(x1)-g(x2)=…=
x1-x2
x1x2
(x1x2-m2)

若0<x1<x2≤m,则x1x2<m2;若m≤x1<x2,则x1x2>m2;而x1x2>0,x1-x2<0
当0<x1<x2≤m时,g(x1)>g(x2);当m≤x1<x2时,g(x1)<g(x2
因此,g(x)在(0,m]上单调递减;g(x)在[m,+∞)上单调递增;
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网