题目内容
设双曲线C:
(a>0,b>0)的一个焦点坐标为(
,0),离心率
, A、B是双曲线上的两点,AB的中点M(1,2).
(1)求双曲线C的方程;
(2)求直线AB方程;
(3)如果线段AB的垂直平分线与双曲线交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054575753.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054607337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054622428.png)
(1)求双曲线C的方程;
(2)求直线AB方程;
(3)如果线段AB的垂直平分线与双曲线交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
(1)
(2)
(3)是,理由见解析
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054638646.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054669457.png)
试题分析:
(1)根据题意已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054685329.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054700444.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054731396.png)
(2)根据题意可得AB为双曲线的一条弦,要求弦所在直线,还需要斜率,可以采用点差法利用弦的中来求解弦的斜率,已知了弦所在直线的斜率与弦上的中点坐标,再利用直线的点斜式即可求出弦所在直线的方程.
(3)由(2)可得AB直线的方程,联立直线AB与双曲线的方程消元解二次方程即可得到A,B两点的坐标,已知AB线段的斜率与中点即可求的AB垂直平分线的直线方程,联立垂直平分线与双曲线的方程消元解二次方程即可求的CD两点的坐标.
试题解析:
(1)依题意得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054747899.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054763708.png)
故双曲线C的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054638646.png)
(2)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054809858.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240420548251076.png)
两式相减得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240420548411174.png)
由题意得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054856439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054872503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054887526.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240420549031100.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054919470.png)
故直线AB的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054669457.png)
(3)假设A、B、C、D四点共圆,且圆心为P. 因为AB为圆P的弦,所以圆心P在AB垂直平分线CD上;又CD为圆P的弦且垂直平分AB,故圆心P为CD中点M. (8分)
下面只需证CD的中点M满足|MA|=|MB|=|MC|=|MD|即可.
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054950925.png)
由(1)得直线CD方程:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054965514.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054981978.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054997410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054997410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054997410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042054997410.png)
所以CD的中点M(-3,6). (12分)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042055059971.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042055075969.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042055090931.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042055121930.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042055137853.png)
即 A、B、C、D四点在以点M(-3,6)为圆心,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042055153430.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目