题目内容
【题目】(12分)若数列{an}是的递增等差数列,其中的a3=5,且a1,a2,a5成等比数列,
(1)求{an}的通项公式;
(2)设bn= ,求数列{bn}的前项的和Tn.
(3)是否存在自然数m,使得 <Tn<对一切n∈N*恒成立?若存在,求出m的值;
若不存在,说明理由.
【答案】(1) an= 2n﹣1;(2)(1﹣)=;(3)存在;理由见解析.
【解析】试题分析:(1)由于{}为等差数列, ,,,成等比数列,可设出数列{}的公差为,列方程组即可求出;(2)在求出{}的通项公式后,求出{}的通项公式,再应用裂项相消法即可求;(3)需先求Tn的值域,要使得恒成立,则需区间()包含Tn的值域即可.
试题解析:
(1)在等差数列中,设公差为d≠0,
由题意,∴,解得.
∴an=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.
(2)由(1)知,an=2n﹣1.
则bn=
所以Tn=
(3)Tn+1﹣Tn=,
∴{Tn}单调递增,∴Tn≥T1=.∵Tn=∴≤Tn<, 使得恒成立,只需
解之得,又因为m是自然数,∴m=2.
【题目】某学校为倡导全体学生为特困学生捐款,举行“一元钱,一片心,诚信用水”活动,学生在购水处每领取一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出和收益情况,如表:
售出水量x(单位:箱) | 7 | 6 | 6 | 5 | 6 |
收益y(单位:元) | 165 | 142 | 148 | 125 | 150 |
(1)求y关于x的线性回归方程;
(2)预测售出8箱水的收益是多少元?
附:回归直线的最小二乘法估计公式分别为: =, =﹣,
【题目】甲,乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于95为正品,小于95为次品,现随机抽取这两台车床生产的零件各100件进行检测,检测结果统计如下:
测试指标 | |||||
机床甲 | 8 | 12 | 40 | 32 | 8 |
机床乙 | 7 | 18 | 40 | 29 | 6 |
(1)试分别估计甲机床、乙机床生产的零件为正品的概率;
(2)甲机床生产一件零件,若是正品可盈利160元,次品则亏损20元;乙机床生产一件零件,若是正品可盈利200元,次品则亏损40元,在(1)的前提下,现需生产这种零件2件,以获得利润的期望值为决策依据,应该如何安排生产最佳?