题目内容
【题目】如图,四边形中, , , , , , 分别在上, ,现将四边形沿折起,使得平面平面.
(1)当,是否在折叠后的上存在一点,使得平面?若存在,求出点位置,若不存在,说明理由;
(2)设,问当为何值时,三棱锥的体积有最大值?并求出这个最大值.
【答案】(1)存在点,当时使得(2)当时,体积最大值为
【解析】试题分析:(1)根据CP∥平面ABEF的性质,建立条件关系即可得到结论.(2)设BE=x,根据三棱锥的体积公式即可得到结论.
试题解析:
(1)若存在P,使得CP∥平面ABEF,此时λ=
证明:当λ=,此时
过P作MP∥FD,与AF交M,则
又PD=5,故MP=3,
∵EC=3,MP∥FD∥EC,
∴MP∥EC,且MP=EC,故四边形MPCE为平行四边形,
∴PC∥ME,
∵CP平面ABEF,ME平面ABEF,
故答案为:CP∥平面ABEF成立。
(2)∵平面ABEF⊥平面EFDC,ABEF∩平面EFDC=EF,AF⊥EF,
∴AF⊥平面EFDC,
∵BE=x,∴AF=x,(0<x<4),FD=6x,
故三棱锥ACDF的体积
,当时,最大值为
【题目】某公司2016年前三个月的利润(单位:百万元)如下:
月份 | 1 | 2 | 3 |
利润 | 2 | 3.9 | 5.5 |
(1)求利润关于月份的线性回归方程;
(2)试用(1)中求得的回归方程预测4月和5月的利润;
(3)试用(1)中求得的回归方程预测该公司2016年从几月份开始利润超过1000万?
相关公式:.
【题目】现在很多人喜欢自助游,2017年孝感杨店桃花节,美丽的桃花风景和人文景观迎来众多宾客.某调查机构为了了解“自助游”是否与性别有关,在孝感桃花节期间,随机抽取了人,得如下所示的列联表:
赞成“自助游” | 不赞成“自助游” | 合计 | |
男性 | |||
女性 | |||
合计 |
(1)若在这人中,按性别分层抽取一个容量为的样本,女性应抽人,请将上面的列联表补充完整,并据此资料能否在犯错误的概率不超过前提下,认为赞成“自助游”是与性别有关系?
(2)若以抽取样本的频率为概率,从旅游节大量游客中随机抽取人赠送精美纪念品,记这人中赞成“自助游”人数为,求的分布列和数学期望.
附: