题目内容

【题目】已知B为线段MN上一点,|MN|=6,|BN|=2,动圆C与MN相切于点B,分别过M,N作圆C的切线,两切线交于点P.求点P的轨迹方程.

【答案】

【解析】分析:如图所示,以MN所在直线为x轴,MN的垂直平分线为y轴O为坐标原点,建立平面直角坐标系,设MP,NP分别与C相切于D、E两点,利用圆的切线的性质可得:,利用双曲线的定义即可判断出.

详解MN所在的直线为x,MN的垂直平分线为y,O为坐标原点,建立平面直角坐标系,如图所示.

MP,NP分别与C相切于D,E两点,则

|PM|-|PN|=|MD|-|NE|=|MB|-|BN|=6-2-2=2,|MN|>2.

所以点P的轨迹是以M,N为焦点,2a=2,2c=6的双曲线的右支(顶点除外).

由a=1,c=3,b2=8.

故点P的轨迹方程为x2

练习册系列答案
相关题目

【题目】北京某附属中学为了改善学生的住宿条件,决定在学校附近修建学生宿舍,学校总务办公室用1000万元从政府购得一块廉价土地,该土地可以建造每层1000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高0.02万元,已知建筑第5层楼房时,每平方米建筑费用为0.8万元.

(1)若学生宿舍建筑为层楼时,该楼房综合费用为万元,综合费用是建筑费用与购地费用之和),写出的表达式;

(2)为了使该楼房每平方米的平均综合费用最低,学校应把楼层建成几层?此时平均综合费用为每平方米多少万元?

【答案】(1);(2)学校应把楼层建成层,此时平均综合费用为每平方米万元

【解析】

由已知求出第层楼房每平方米建筑费用为万元,得到第层楼房建筑费用,由楼房每升高一层,整层楼建筑费用提高万元,然后利用等差数列前项和求建筑层楼时的综合费用

设楼房每平方米的平均综合费用为,则,然后利用基本不等式求最值.

解:由建筑第5层楼房时,每平方米建筑费用为万元,

且楼房每升高一层,整层楼每平方米建筑费用提高万元,

可得建筑第1层楼房每平方米建筑费用为:万元.

建筑第1层楼房建筑费用为:万元

楼房每升高一层,整层楼建筑费用提高:万元

建筑第x层楼时,该楼房综合费用为:

设该楼房每平方米的平均综合费用为

则:

当且仅当,即时,上式等号成立.

学校应把楼层建成10层,此时平均综合费用为每平方米万元.

【点睛】

本题考查简单的数学建模思想方法,训练了等差数列前n项和的求法,训练了利用基本不等式求最值,是中档题.

型】解答
束】
20

【题目】已知

(1)求函数的最小正周期和对称轴方程;

(2)若,求的值域.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网