题目内容
11.已知等差数列{an}的公差d≠0,它的前n项和为Sn,若S5=70,且a1,a7,a37成等比数列.(1)求数列{an}的通项公式;
(2)设数列$\left\{{\frac{1}{S_n}}\right\}$的前n项和为Tn,求证:$\frac{1}{6}≤{T_n}<\frac{3}{8}$.
分析 (1)通过S5=70且a1,a7,a37成等比数列,计算即得结论;
(2)通过(1)可得${S_n}=2{n^2}+4n$,分离分母可得$\frac{1}{{S}_{n}}$=$\frac{1}{4}({\frac{1}{n}-\frac{1}{n+2}})$,并项相加得Tn=$\frac{3}{8}-\frac{1}{4}({\frac{1}{n+1}+\frac{1}{n+2}})$,进而可得${T_n}<\frac{3}{8}$、数列{Tn}是递增数列,即得结论.
解答 (1)解:∵数列{an}是等差数列,
∴an=a1+(n-1)d,${S_n}=n{a_1}+\frac{{n({n-1})}}{2}d$,
依题意,有$\left\{\begin{array}{l}{S_5}=70\\{a_7}^2={a_1}{a_{37}}.\end{array}\right.$,即$\left\{\begin{array}{l}5{a_1}+10d=70\\{({{a_1}+6d})^2}={a_1}({{a_1}+35d}).\end{array}\right.$,
解得a1=6,d=4,
∴数列{an}的通项公式为an=4n+2(n∈N*);
(2)证明:由(1)可得${S_n}=2{n^2}+4n$,
∴$\frac{1}{S_n}=\frac{1}{{2{n^2}+4n}}=\frac{1}{{2n({n+2})}}$=$\frac{1}{4}({\frac{1}{n}-\frac{1}{n+2}})$,
∴${T_n}=\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{{{S_{n-1}}}}+\frac{1}{S_n}$
=$\frac{1}{4}({1-\frac{1}{3}})+\frac{1}{4}({\frac{1}{2}-\frac{1}{4}})+\frac{1}{4}({\frac{1}{3}-\frac{1}{5}})+…+\frac{1}{4}({\frac{1}{n-1}-\frac{1}{n+1}})+\frac{1}{4}({\frac{1}{n}-\frac{1}{n+2}})$
=$\frac{1}{4}({1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}})$
=$\frac{3}{8}-\frac{1}{4}({\frac{1}{n+1}+\frac{1}{n+2}})$,
∵${T_n}-\frac{3}{8}=-\frac{1}{4}({\frac{1}{n+1}+\frac{1}{n+2}})<0$,∴${T_n}<\frac{3}{8}$,
∵${T_{n+1}}-{T_n}=\frac{1}{4}({\frac{1}{n+1}-\frac{1}{n+3}})>0$,
∴数列{Tn}是递增数列,
∴${T_n}≥{T_1}=\frac{1}{6}$,
∴$\frac{1}{6}≤{T_n}<\frac{3}{8}$.
点评 本题考查求数列的通项及判断和的取值范围,注意解题方法的积累,属于中档题.
A. | $\sqrt{15}$ | B. | $2\sqrt{15}$ | C. | $±\sqrt{15}$ | D. | $±2\sqrt{15}$ |
A. | 5 | B. | ±$\sqrt{10}$ | C. | $\sqrt{10}$ | D. | -5 |