题目内容
5.如图,在长方体ABCD-A1B1C1D1中,AB=5,BC=4,AA1=3,沿该长方体对角面ABC1D1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为114.分析 根据题目要求,拼成一个新的四棱柱,只能是重合前后,或上下的面,再根据边长得出拼接的几何体,当5×3的两个面叠合时,所得新的四棱柱的表面积最大求解面积即可.
解答 解:根据题目要求得出:
当5×3的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(5×4+5×5+3×4)×2=114.
故答案为:114
点评 本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题.
练习册系列答案
相关题目
16.某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某四天的用电量与当天气温,列表如下:
由表中数据得到回归直线方程$\widehat{y}$=-2x+a.据此预测当气温为-4°C时,用电量为68(单位:度).
由表中数据得到回归直线方程$\widehat{y}$=-2x+a.据此预测当气温为-4°C时,用电量为68(单位:度).
气温(x℃) | 18 | 13 | 10 | -1 |
用电量(度) | 24 | 34 | 38 | 64 |
20.若等式(2x-1)2014=a0+a1x+a2x2+…+a2014x2014对于一切实数x都成立,则a0+$\frac{1}{2}a$1+$\frac{1}{3}$a2+…+$\frac{1}{2015}$a2014=( )
A. | $\frac{1}{4030}$ | B. | $\frac{1}{2015}$ | C. | $\frac{2}{2015}$ | D. | 0 |