题目内容
【题目】已知函数,其中无理数.
(Ⅰ)若函数有两个极值点,求的取值范围;
(Ⅱ)若函数的极值点有三个,最小的记为,最大的记为,若的最大值为,求的最小值.
【答案】(Ⅰ);(Ⅱ).
【解析】分析:(Ⅰ)先对函数求导,构造,则函数有两个极值点等价于 有两个不等的正实根,对函数求导,然后对和进行讨论,可得函数的单调性,结合,即可求得的取值范围;(Ⅱ)对函数求导,由有三个极值点,则有三个零点,1为一个零点,其他两个则为的零点,结合(Ⅰ),可得的两个零点即为的最小和最大极值点,,即,令,由题知,则,令,利用导数研究函数的单调性,从而可求得的最小值即的最小值.
详解:(Ⅰ),
令,,
∵有两个极值点
∴ 有两个不等的正实根
∵
∴当时,,在上单调递增,不符合题意.
当时,当时,,当时,,
∴在上单调递减,在上单调递增.
又∵,当→时,→
∴
∴
综上,的取值范围是.
(Ⅱ).
∵有三个极值点
∴有三个零点,1为一个零点,其他两个则为的零点,由(Ⅰ)知.
∵
∴的两个零点即为的最小和最大极值点,,即.
∴
令,由题知.
∴,,
∴
令,,则,令,则.
∴在上单调递增
∴
∴在上单调递减
∴
故的最小值为.
练习册系列答案
相关题目