题目内容
【题目】已知函数
(1)当a=1时,求函数f(x)的单调区间;
(2)若恒成立,求b-a的最小值.
【答案】(1)f(x)的单调增区间为(e,+∞),减区间为(0,e);(2).
【解析】分析:(Ⅰ)求出,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(Ⅱ)由题意得,可得函数单调增区间为,减区间为,即恒成立,,即,构造函数,利用导数研究函数的单调性可得,即可得的最小值.
详解:(Ⅰ)当a=1时,f(x)=(2x2+x)lnx﹣3x2﹣2x+b(x>0).
f′(x)=(4x+1)(lnx﹣1),令f′(x)=0,得x=e.
x∈(0,e)时,f′(x)<0,∈(e,+∞)时,f′(x)>0.
函数f(x)的单调增区间为(e,+∞),减区间为(0,e);
(Ⅱ)由题意得f′(x)=(4x+1)(lnx﹣a),(x>0).
令f′(x)=0,得x=ea.x∈(0,e a)时,f′(x)<0,∈(ea ,+∞)时,f′(x)>0.
函数f(x)的单调增区间为(ea,+∞),减区间为(0,ea)
∴f(x)min=f(ea)=﹣e2a﹣ea+b,
∵f(x)≥0恒成立,∴f(ea)=﹣e2a﹣ea+b≥0,则b≥e2a+ea.∴b﹣a≥e2a+ea﹣a
令ea=t,(t>0),∴e2a+ea﹣a=t2+t﹣lnt,设g(t)=t2+t﹣lnt,(t>0),g′(t)=.
当t∈(0,)时,g′(t)<0,当时,g′(t)>0.
∴g(t)在(0,)上递减,在(,+∞)递增.
∴g(t)min=g()=.f(x)≥0恒成立,b﹣a的最小值为.
【题目】已知某海滨浴场海浪的高度y(米)是时间t的(0≤t≤24,单位:小时)函数,记作y=f(t),下表是某日各时的浪高数据:
t(h) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(m) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b的图象.
(1)根据以上数据,求出函数y=Acosωt+b的最小正周期T、振幅A及函数表达式;
(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8时到晚上20时之间,有多长时间可供冲浪者进行运动?