题目内容
【题目】已知抛物线:,圆:,直线:与抛物线相切于点,与圆相切于点.
(1)若直线的斜率,求直线和抛物线的方程;
(2)设为抛物线的焦点,设,的面积分别为,,若,求的取值范围.
【答案】(1):,:;(2).
【解析】试题分析:(1)第一问,一般先设出直线的方程,再根据直线和圆相切得到b的值. 再利用直线和抛物线方程组的判别式等于零,得到P的值. (2)第(2)问,一般利用函数的思想求的取值范围.先要分别计算出,,从而得到函数,再选择合适的方法求取值范围.
试题解析:
(1)由题设知:,且,
由与相切知,到的距离,得,
∴:.
将与的方程联立消得,
其得,
∴:.
综上,:,:.
(2)不妨设,根据对称性,得到的结论与得到的结论相同.
此时,又知,设,,
由消得,
其得,从而解得,
由与切于点知到:的距离,得则,故.
由得,
故 .
到:的距离为 ,
∴ ,
又,
∴ .
当且仅当即时取等号,
与上同理可得,时亦是同上结论.
综上,的取值范围是.
练习册系列答案
相关题目
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]
(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入 (单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益 (单位:万元) | 2 | 3 | 2 | 7 |
由表中的数据显示, 与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.