题目内容
【题目】已知动点到两点,的距离之和为4,点在轴上的射影是C,.
(1)求动点的轨迹方程;
(2)过点的直线交点的轨迹于点,交点的轨迹于点,求的最大值.
【答案】(1).(2)1
【解析】
(1)根据椭圆的定义和题设条件,求得点的轨迹方程是,设点坐标为,由所以点的坐标为,代入即可求解.
(2)若轴,求得;若直线不与轴垂直,设直线的方程为,根据圆的弦长公式,求得,再联立方程组,结合根与系数的关系,求得的表达式,代入化简,即可求解.
(1)设,
因为点到两点的距离之和为4,即
可得点的轨迹是以为焦点,长轴长为4的椭圆,
所以,即,且,则,
所以点的轨迹方程是.
设点坐标为,因所以点的坐标为,可得,
化简得点的轨迹方程为.
(2)若轴,则,.
若直线不与轴垂直,设直线的方程为,即,
则坐标原点到直线的距离,
.
设.将代入,并化简得,
.
,.
,
当且仅当即时,等号成立.
综上所述,最大值为1.
练习册系列答案
相关题目