题目内容
【题目】如图,在四棱锥中,,,,且,.
(1)证明:平面;
(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.
【答案】(1)见证明 (2)见解析
【解析】
(1)推导出AB⊥AC,AP⊥AC,AB⊥PC,从而AB⊥平面PAC,进而PA⊥AB,由此能证明PA⊥平面ABCD;
(2)以A为原点,AB为x轴,AC为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出在线段PD上,存在一点M,使得二面角M﹣AC﹣D的大小为60°,4﹣2.
(1)∵在底面中,,
且
∴,∴
又∵,,平面,平面
∴平面 又∵平面 ∴
∵, ∴
又∵,,平面,平面
∴平面
(2)方法一:在线段上取点,使 则
又由(1)得平面 ∴平面
又∵平面 ∴ 作于
又∵,平面,平面
∴平面 又∵平面 ∴
又∵ ∴是二面角的一个平面角
设 则,
这样,二面角的大小为
即
即
∴满足要求的点存在,且
方法二:取的中点,则、、三条直线两两垂直
∴可以分别以直线、、为、、轴建立空间直角坐标系
且由(1)知是平面的一个法向量
设 则,
∴,
设是平面的一个法向量
则 ∴
令,则,它背向二面角
又∵平面的法向量,它指向二面角
这样,二面角的大小为
即
即
∴满足要求的点存在,且
练习册系列答案
相关题目