ÌâÄ¿ÄÚÈÝ
ÏÂÁÐÍÆÀíÖÐÊôÓÚ¹éÄÉÍÆÀíÇÒ½áÂÛÕýÈ·µÄÊÇ(¡¡¡¡)
A£®ÉèÊýÁÐ{an}µÄÇ°nÏîºÍΪSn.ÓÉan£½2n£1£¬Çó³öS1£½12£¬S2£½22£¬S3£½32£¬¡£¬ÍƶϣºSn£½n2
B£®ÓÉf(x)£½xcos xÂú×ãf(£x)£½£f(x)¶Ô?x¡ÊR¶¼³ÉÁ¢£¬Íƶϣºf(x)£½xcos xΪÆ溯Êý
C£®ÓÉÔ²x2£«y2£½r2µÄÃæ»ýS£½¦Ðr2£¬ÍƶϣºÍÖÔ²£½1(a£¾b£¾0)µÄÃæ»ýS£½¦Ðab
D£®ÓÉ(1£«1)2£¾21£¬(2£«1)2£¾22£¬(3£«1)2£¾23£¬¡£¬Íƶϣº¶ÔÒ»ÇÐn¡ÊN*£¬(n£«1)2£¾2n
A
¡¾½âÎö¡¿×¢Òâµ½£¬Ñ¡ÏîAÓÉһЩÌØÊâÊÂÀýµÃ³öÒ»°ãÐÔ½áÂÛ£¬ÇÒ×¢Òâµ½ÊýÁÐ{an}ÊǵȲîÊýÁУ¬ÆäÇ°nÏîºÍSn£½£½n2£¬Ñ¡ÏîDÖеÄÍÆÀíÊôÓÚ¹éÄÉÍÆÀí£¬µ«½áÂÛ²»ÕýÈ·£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿