题目内容
14.已知$\frac{sinα+3cosα}{3cosα-sinα}=5$,则$tan({α+\frac{π}{4}})$=-3.分析 由已知式子可得tanα,再由两角和的正切公式可得.
解答 解:∵$\frac{sinα+3cosα}{3cosα-sinα}=5$,
∴$\frac{tanα+3}{3-tanα}$=5,解得tanα=2,
∴$tan({α+\frac{π}{4}})$=$\frac{tanα+1}{1-tanα}$=$\frac{2+1}{1-2}$=-3
故答案为:-3
点评 本题考查两角和与差的正切函数,属基础题.
练习册系列答案
相关题目
2.把分别标有“我”“爱”“你”的三张卡片随意的排成一排,则能使卡片从左到右可以念成“我爱你”和“你爱我”的概率是( )
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{4}$ |
19.通过随机询问某校110名高中生在购买食物时是否看营养说明,得如下列联表:
(1)从这50名女生中按是否看营养说明分层抽样,抽取一个容量为5的样本,问样本中看与不看营养说明的女生各有多少名?
(2)根据以上列联表,问能否在犯错误的概率不超过0.010的前提下认为“性别与在购物时看营养说明有关系”${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,参考数据:
男 | 女 | 总计 | |
看营养说明 | 50 | 30 | 80 |
不看营养说明 | 10 | 20 | 30 |
总计 | 60 | 50 | 110 |
(2)根据以上列联表,问能否在犯错误的概率不超过0.010的前提下认为“性别与在购物时看营养说明有关系”${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,参考数据:
p(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
6.设函数f(x)=lg(x2+ax-a-1),给出下述命题:
①函数f(x)的值域为R;
②函数f(x)有最小值;
③当a=0时,函数f(x)为偶函数;
④若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围a≥-4.
正确的命题是( )
①函数f(x)的值域为R;
②函数f(x)有最小值;
③当a=0时,函数f(x)为偶函数;
④若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围a≥-4.
正确的命题是( )
A. | ①③④ | B. | ②③ | C. | ②④ | D. | ①③ |
3.在对人们的休闲方式的一次调查中,共调查了100人,其中女性20人,男性80人.女性中有10人主要的休闲方式是看电视,另外10人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外60人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;
(2)能否在犯错误的概率不超过0.05的前提下认为性别与休闲方式有关系?
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
(1)根据以上数据建立一个2×2的列联表;
(2)能否在犯错误的概率不超过0.05的前提下认为性别与休闲方式有关系?
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(k2>k) | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |