题目内容
【题目】已知函数f(x)=2x﹣ .
(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.
【答案】
(1)解:当x≤0时f(x)=0,
当x>0时, ,
有条件可得, ,
即22x﹣2×2x﹣1=0,解得 ,∵2x>0,∴ ,∴ .
(2)解:当t∈[1,2]时, ,
即m(22t﹣1)≥﹣(24t﹣1).∵22t﹣1>0,∴m≥﹣(22t+1).
∵t∈[1,2],∴﹣(1+22t)∈[﹣17,﹣5],
故m的取值范围是[﹣5,+∞)
【解析】(1)当x≤0时得到f(x)=0而f(x)=2,所以无解;当x>0时解出f(x)=2求出x即可;(2)由t∈[1,2]时,2tf(2t)+mf(t)≥0恒成立得到,得到f(t)= ,代入得到m的范围即可.
练习册系列答案
相关题目