题目内容

若非零函数对任意实数均有,且当
(1)求证:
(2)求证:为R上的减函数;
(3)当时, 对恒有,求实数的取值范围.

(1)证法一:[来源:学&科&网]

时, 
 则
故对于恒有
证法二: 为非零函数   
(2)证明:令
, 又 即
 又 
为R上的减函数
(3)实数的取值范围为

解析试题分析:(1)由题意可取代入等式,得出关于的方程,因为为非零函数,故,再令代入等式,可证,从而证明当时,有;(2)着眼于减函数的定义,利用条件当时,有,根据等式,令,可得,从而可证该函数为减函数.(3)根据,由条件可求得,将替换不等式中的,再根据函数的单调性可得,结合的范围,从而得解.
试题解析:(1)证法一:

时, 
 则
故对于恒有                             4分
证法二: 为非零函数   
(2)令
, 又 即
 又 
为R上的减函数                                 8分
(3),        10分
则原不等式可变形为
依题意有 恒成立

故实数的取值范围为       14分
考点:1.函数的概念;2.函数的单调性;3.二次函数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网