题目内容
某校举行综合知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有6次答题的机会,选手累计答对4题或答错3题即终止其初赛的比赛,答对4题者直接进入决赛,答错3题者则被淘汰.已知选手甲答题连续两次答错的概率为(已知甲回答每道题的正确率相同,并且相互之间没有影响).
(Ⅰ)求选手甲回答一个问题的正确率;
(Ⅱ)求选手甲可以进入决赛的概率.
(Ⅰ);(Ⅱ);(Ⅲ).
解析试题分析:
解题思路:(Ⅰ)利用对立事件的概率求解;(Ⅱ)利用相互独立事件同时发生的概率公式求解(Ⅲ)利用二项分布的概率公式和互斥事件的概率公式求解.
规律总结:涉及概率的求法,要掌握好基本的概率模型,正确判断概率类型,合理选择概率公式.
试题解析:(1)(Ⅰ)设选手甲答对一个问题的正确率为,
则故选手甲回答一个问题的正确率
(Ⅱ)选手甲答了4道题进入决赛的概率为;
(Ⅲ)选手甲答了5道题进入决赛的概率为;
选手甲答了6道题进入决赛的概率为;
故选手甲可进入决赛的概率.
考点:1.互斥事件与对立事件;2.二项分布.
练习册系列答案
相关题目
某校夏令营有3名男同学和3名女同学,其年级情况如下表:
| 一年级 | 二年级 | 三年级 |
男同学 | |||
女同学 |
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)
(1)用表中字母列举出所有可能的结果
(2)设为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件发生的概率.
为了解某班学生关注NBA是否与性别有关,对本班48人进行了问卷调查得到如下的列联表:
| 关注NBA | 不关注NBA | 合 计 |
男 生 | | 6 | |
女 生 | 10 | | |
合 计 | | | 48 |
已知在全班48人中随机抽取1人,抽到关注NBA的学生的概率为2/3
⑴请将上面列连表补充完整,并判断是否有的把握认为关注NBA与性别有关?
⑵现从女生中抽取2人进一步调查,设其中关注NBA的女生人数为X,求X的分布列与数学期望.
附:,其中
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
某家电专卖店在五一期间设计一项有奖促销活动,每购买一台电视,即可通过电脑产生一组3个数的随机数组,根据下表兑奖:
奖次 | 一等奖 | 二等奖 | 三等奖 |
随机数组的特征 | 3个1或3个0 | 只有2个1或2个0 | 只有1个1或1个0 |
资金(单位:元) | 5m | 2m | m |
商家为了了解计划的可行性,估计奖金数,进行了随机模拟试验,并产生了20个随机数组,试验结果如下:
247,235,145,124,754,353,296,065,379,118,520,378,218,953,254,368,027,111,358,279.
(1)在以上模拟的20组数中,随机抽取3组数,至少有1组获奖的概率;
(2)根据以上模拟试验的结果,将频率视为概率:
(ⅰ)若活动期间某单位购买四台电视,求恰好有两台获奖的概率;
(ⅱ)若本次活动平均每台电视的奖金不超过260元,求m的最大值.