题目内容
设Sn是等差数列{an}的前n项和,若
=
,则
=______.
S3 |
S6 |
1 |
3 |
S6 |
S12 |
由等差数列的性质可得S3,S6-S3,S9-S6,S12-S9成等差数列,
由
=
可得S6=3S3,故S6-S3=2S3,
故S9-S6=3S3,S12-S9=4S3,
解之可得S9=6S3,S12=10S3,
故
=
=
故答案为:
由
S3 |
S6 |
1 |
3 |
故S9-S6=3S3,S12-S9=4S3,
解之可得S9=6S3,S12=10S3,
故
S6 |
S12 |
3S3 |
10S3 |
3 |
10 |
故答案为:
3 |
10 |
练习册系列答案
相关题目