题目内容
【题目】已知圆M:及定点,点A是圆M上的动点,点B在上,点G在上,且满足,,点G的轨迹为曲线C.
(1)求曲线C的方程;
(2)设斜率为k的动直线l与曲线C有且只有一个公共点,与直线和分别交于P、Q两点.当时,求(O为坐标原点)面积的取值范围.
【答案】(1);(2).
【解析】
(1)根据题意得到GB是线段的中垂线,从而为定值,根据椭圆定义可知点G的轨迹是以M,N为焦点的椭圆,即可求出曲线C的方程;(2)联立直线方程和椭圆方程,表示处的面积代入韦达定理化简即可求范围.
(1)为的中点,且是线段的中垂线,
,又,
∴点G的轨迹是以M,N为焦点的椭圆,
设椭圆方程为(),
则,,,
所以曲线C的方程为.
(2)设直线l:(),
由消去y,可得.
因为直线l总与椭圆C有且只有一个公共点,
所以,.①
又由可得;同理可得.
由原点O到直线的距离为和,
可得.②
将①代入②得,
当时,,
综上,面积的取值范围是.
练习册系列答案
相关题目