题目内容
【题目】为创建全国文明城市,某区向各事业行政单位征集“文明过马路”义务督导员.从符合条件的600名志愿者中随机抽取100名,按年龄作分组如下:[20,25) , [25,30) , [30,35), [35,40) , [40,45] ,并得到如下频率分布直方图.
(Ⅰ)求图中 的值,并根据频率分布直方图统计这600名志愿者中年龄在[30.40)的人数;
(Ⅱ)在抽取的100名志愿者中按年龄分层抽取10名参加区电视台“文明伴你行”节目录制,再从这10名志愿者中随机选取3名到现场分享劝导制止行人闯红灯的经历,记这3名志愿者中年龄不低于35岁的人数为 ,求的分布列及数学期望.
【答案】(Ⅰ),人;(Ⅱ)见解析.
【解析】试题分析:(I)根据频率分布直方图中矩形面积和为,求得,然后利用相应公式计算相应组中抽取人数;
(II)先确定各组人数,根据题意可得 的所有可能取值为0,1,2,3,依次求出概率即可.
试题解析:
(Ⅰ)因为小矩形的面积等于频率.
所以,求得.
所以这600名志愿者中,年龄在[30,40]人数为(人).
(Ⅱ)用分层抽取的方法从中抽取10名志愿者,则年龄低于35岁的人数有(人),年龄不低于35岁的人数有(人).
依题意, 的所有可能取值为0,1,2,3,则 ,.
所以X的分布列为
P | 0 | 1 | 2 | 3 |
X |
数学期望为.
【题目】为响应阳光体育运动的号召,某县中学生足球活动正如火如荼地展开,该县为了解本县中学生的足球运动状况,根据性别采取分层抽样的方法从全县24000名中学生(其中男生14000人,女生10000人)中抽取120名,统计他们平均每天足球运动的时间,如下表:(平均每天足球运动的时间单位为小时,该县中学生平均每天足球运动的时间范围是).
(1)请根据样本估算该校男生平均每天足球运动的时间(结果精确到0.1);
(2)若称平均每天足球运动的时间不少于2小时的学生为“足球健将”,低于2小时的学生为“非足球健将”.
①请根据上述表格中的统计数据填写下面列联表,并通过计算判断,能否有90%的把握认为是否为“足球健将”与性别有关?
②若在足球运动时间不足1小时的男生中抽取2名代表了解情况,求这2名代表都是足球运动时间不足半小时的概率.
参考公式:,其中.
参考数据:
0.05 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
3.841 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |