题目内容
12.化简:$\frac{sin(θ-π)si{n}^{2}(θ+\frac{π}{2})tan(θ+3π)}{cos(2π-θ)cos(-\frac{3π}{2}+θ)sin(π+θ)}$.分析 直接利用诱导公式化简得答案.
解答 解:$\frac{sin(θ-π)si{n}^{2}(θ+\frac{π}{2})tan(θ+3π)}{cos(2π-θ)cos(-\frac{3π}{2}+θ)sin(π+θ)}$
=$\frac{(-sinθ)•co{s}^{2}θ•tanθ}{cosθ•(-sinθ)•(-sinθ)}$=$\frac{cosθ•\frac{sinθ}{cosθ}}{-sinθ}=-1$.
点评 本题考查三角函数的化简与求值,考查诱导公式的应用,是基础的计算题.
练习册系列答案
相关题目
2.椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的焦点的坐标为( )
A. | (0,5)和(0,-5) | B. | ($\sqrt{7}$,0)和(-$\sqrt{7}$,0) | C. | (0,$\sqrt{7}$) | D. | (5,0)和(-5,0) |
20.已知复数z满足(1+3i)z=10i(其中i为虚数单位),则z等于( )
A. | 3-i | B. | 3+i | C. | 1+3i | D. | 1-3i |
7.已知命题p:?α∈R,cos(π-α)=cosα;命题q:?x∈R,x2+1>0.则下面结论正确的是( )
A. | ¬q是真命题 | B. | p 是假命题 | C. | p∧q是假命题 | D. | p∨q是真命题 |
17.设集合M=$\{y|\frac{x^2}{25}+\frac{y^2}{9}=1\}$,N={x|2x+1≤1},则M∩(∁RN)=( )
A. | (3,+∞) | B. | (-2,-1] | C. | (-1,3] | D. | [-1,3) |
4.如图,在四边形ABCD中,AB=CD=1,BC=$\sqrt{3}$,且∠B=90°,∠BCD=120°,记向量$\overrightarrow{AB}=\overrightarrow{a}$,$\overrightarrow{AC}=\overrightarrow{b}$,则$\overrightarrow{AD}$=( )
A. | $\frac{2\sqrt{3}}{3}\overrightarrow{a}$-(1+$\frac{\sqrt{3}}{6}$)$\overrightarrow{b}$ | B. | -$\frac{2\sqrt{3}}{3}\overrightarrow{a}$+(1+$\frac{\sqrt{3}}{6}$)$\overrightarrow{b}$ | C. | -$\frac{2\sqrt{3}}{3}\overrightarrow{a}$+(1-$\frac{\sqrt{3}}{6}$)$\overrightarrow{b}$ | D. | $\frac{2\sqrt{3}}{3}\overrightarrow{a}$+(1+$\frac{\sqrt{3}}{6}$)$\overrightarrow{b}$ |
2.P为椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1上一点,F1、F2分别为左、右焦点,若|PF1|,|F1F2|,|PF2|成等比数列,则△PF1F2的面积为( )
A. | 2$\sqrt{3}$ | B. | 4$\sqrt{3}$ | C. | 4 | D. | 8 |