题目内容
已知函数f(x)=
,x∈[1,+∞).
(1)当a=
时,求f(x)的最小值;
(2)若对任意x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040714154625.png)
(1)当a=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040714170338.png)
(2)若对任意x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.
(1)
(2)a>-3
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040714185377.png)
(1)当a=
时,f(x)=x+
+2.
设x1>x2≥1,则f(x1)-f(x2)=(x1-x2)+
=(x1-x2)·
.
∵x1>x2≥1,∴f(x1)>f(x2),∴f(x)在[1,+∞)上为增函数.
∴f(x)≥f(1)=
,即f(x)的最小值为
.
(2)∵f(x)>0在x∈[1,+∞)上恒成立,
即x2+2x+a>0在[1,+∞)上恒成立,
∴a>[-(x2+2x)]max.
∵t(x)=-(x2+2x)在[1,+∞)上为减函数,
∴t(x)max=t(1)=-3,∴a>-3.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040714170338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040714217408.png)
设x1>x2≥1,则f(x1)-f(x2)=(x1-x2)+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040714248810.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040714263639.png)
∵x1>x2≥1,∴f(x1)>f(x2),∴f(x)在[1,+∞)上为增函数.
∴f(x)≥f(1)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040714185377.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040714185377.png)
(2)∵f(x)>0在x∈[1,+∞)上恒成立,
即x2+2x+a>0在[1,+∞)上恒成立,
∴a>[-(x2+2x)]max.
∵t(x)=-(x2+2x)在[1,+∞)上为减函数,
∴t(x)max=t(1)=-3,∴a>-3.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目