题目内容

如图,内外两个椭圆的离心率相同,从外层椭圆顶点向内层椭圆引切线AC,BD,设内层椭圆方程为 ,若直线AC与BD的斜率之积为,则椭圆的离心率为(  )
A.B.C.D.
C

试题分析:【方法一】由于内层椭圆和外层椭圆的离心率相等,不妨设外层椭圆的方程为,设切线的方程为,则
消去

化简得
同理可得
因此,所以,因此
故椭圆的离心率为.故选C.
【方法二】椭圆在其上一点处的切点方程为
,由于内外两个椭圆的离心率相同,则可设外层椭圆的方程为,则,内层椭圆在点C处的切线方程为,而AC的方程为,其斜率为,同理直线BD的方程为,其斜率为
  ①,
直线AC过点,则有
直线BD过点,则有,∴
,∴,设
不妨设点C为第一象限内的点,则点D为第二象限内的点,则为锐角,为钝角,
,∴,则为锐角,∴
,∴,由①式得,
,∴
,∴,∴,故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网