题目内容
【题目】已知: 命题p:若函数f(x)=x2+|x﹣a|是偶函数,则a=0.
命题q:m∈(0,+∞),关于x的方程mx2﹣2x+1=0有解.
在①p∨q;②p∧q;③(¬p)∧q;④(¬p)∨(¬q)中为真命题的是( )
A.②③
B.②④
C.③④
D.①④
【答案】D
【解析】解:若函数f(x)=x2+|x﹣a|为偶函数,则(﹣x)2+|﹣x﹣a|=x2+|x﹣a|,即有|x+a|=|x﹣a|,易得a=0,故命题p为真;
当m>0时,方程的判别式△=4﹣4m不恒大于等于零,
当m>1时,△<0,此时方程无实根,故命题q为假,
即p真q假,
故命题p∨q为真,p∧q为假,(¬p)∧q为假,(¬p)∨(¬q)为真.
综上可得真确命题为①④.
故选:D.
【考点精析】利用复合命题的真假和命题的真假判断与应用对题目进行判断即可得到答案,需要熟知“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真;两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.
练习册系列答案
相关题目