题目内容
8.在回归分析中,给出下列结论:(1)可用指数系数R2的值判断拟合效果,R2越大,拟合效果越好;
(2)可用残差平方和判断拟合效果,残差的平方和越大,拟合效果越好;
(3)可用相关系数r的值判断拟合效果,r越小,拟合效果越好;
(4)可用残差图判断拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明拟合精度越高.
以上结论中,正确的个数为( )
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 通过对衡量模拟效果好坏的几个量,即相关指数、残差平方和、相关系数及残差图中带状区域的宽窄进行分析,残差平方和越小越好,带状区域的宽度越窄,说明模型的拟合精度越高,R2越大,模型的拟合效果越好,相关系数|r|越大,模型的拟合效果越好.
解答 解:用相关指数R2的值判断模型的拟合效果,R2越大,模型的拟合效果越好,故(1)正确;
可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,故(2)不正确;
可用相关系数r的值判断模型的拟合效果,|r|越大,模型的拟合效果越好,而不是r越大,模型的拟合效果越好,
当r为负值时则不然.故(3)不正确;
可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.故(4)正确.
综上可知命题(1)、(4)正确.
故选:B.
点评 本题考查回归分析,本题解题的关键是理解对于拟合效果好坏的几个量的大小反映的拟合效果的好坏,本题是一个基础题.
练习册系列答案
相关题目
8.某企业员工有500人参加“学雷锋”志愿活动,按年龄分组:第一组[25,30),第二组[30,35),第三组[35,40),第四组[40,45),第五组[45,50),得到的频率分布直方图如图所示
(Ⅰ)下表是年龄的频数分布表,求正整数a,b的值,
(Ⅱ)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组抽取的人数分别是多少?
(Ⅰ)下表是年龄的频数分布表,求正整数a,b的值,
区间 | [25,30) | [30,35) | [35,40) | [40,45) | [45,50) |
人数 | 50 | 50 | a | 150 | b |
16.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1(x<1)}\\{\frac{lnx}{x}(x≥1)}\end{array}\right.$,参数k∈[-1,1],则方程f(x)-kx=0有四个实数根的概率为( )
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2e}$ | D. | $\frac{1}{4e}$ |
3.据统计,在某银行的一个营业窗口等候的人数及其相应的概率如下:
试求:
(1)至多有2人等候排队的概率是多少?
(2)至少有3人等候排队的概率是多少.
排队人数题 | 0人 | 1人 | 2人 | 3人 | 4人 | 5人及5人以上 |
概率 | 0.05 | 0.14 | 0.35 | 0.3 | 0.1 | 0.06 |
(1)至多有2人等候排队的概率是多少?
(2)至少有3人等候排队的概率是多少.