题目内容

16.数列{an}满足an=-an-1+16an-2-20an-3,n≥3,已知初始值a0=0,a1=1,a2=-1,求{an}的通项公式.

分析 通过对an=-an-1+16an-2-20an-3(n≥3)变形可知an+3an-1-10an-2=2(an-1+3an-2-10an-3)(n≥3),进而可知数列{an+2+3an+1-10an}是首项为4、公比为2的等比数列,从而an+2+3an+1-10an=2n+1,对其两边同时除以2n+2得$\frac{{a}_{n+2}}{{2}^{n+2}}$+$\frac{3}{2}$•$\frac{{a}_{n+1}}{{2}^{n+1}}$-$\frac{5}{2}$•$\frac{{a}_{n}}{{2}^{n}}$=$\frac{1}{2}$,并变形可知$\frac{{a}_{n+2}}{{2}^{n+2}}$+$\frac{5}{2}$•$\frac{{a}_{n+1}}{{2}^{n+1}}$-$\frac{n+1}{2}$=$\frac{{a}_{n+1}}{{2}^{n+1}}$+$\frac{5}{2}$•$\frac{{a}_{n}}{{2}^{n}}$-$\frac{n}{2}$,计算可知$\frac{{a}_{n+1}}{{2}^{n+1}}$+$\frac{5}{2}$•$\frac{{a}_{n}}{{2}^{n}}$=$\frac{n+1}{2}$,再次变形的$\frac{{a}_{n+1}}{{2}^{n+1}}$-$\frac{n+1}{7}$-$\frac{5}{49}$=-$\frac{5}{2}$($\frac{{a}_{n}}{{2}^{n}}$-$\frac{n}{7}$-$\frac{5}{49}$),进而可知数列{$\frac{{a}_{n}}{{2}^{n}}$-$\frac{n}{7}$-$\frac{5}{49}$}是首项为$\frac{25}{98}$、公比为-$\frac{5}{2}$的等比数列,计算即得结论.

解答 解:∵an=-an-1+16an-2-20an-3(n≥3),
∴an+3an-1-10an-2=2(an-1+3an-2-10an-3)(n≥3),
又∵a0=0,a1=1,a2=-1,
∴a3+3a2-10a1=2(a2+3a1-10a0)=2(-1+3-0)=4,
∴数列{an+2+3an+1-10an}是首项为4、公比为2的等比数列,
∴an+2+3an+1-10an=2n+1
两边同时除以2n+2,得:$\frac{{a}_{n+2}}{{2}^{n+2}}$+$\frac{3}{2}$•$\frac{{a}_{n+1}}{{2}^{n+1}}$-$\frac{5}{2}$•$\frac{{a}_{n}}{{2}^{n}}$=$\frac{1}{2}$,
∴$\frac{{a}_{n+2}}{{2}^{n+2}}$+$\frac{5}{2}$•$\frac{{a}_{n+1}}{{2}^{n+1}}$-$\frac{n+1}{2}$=$\frac{{a}_{n+1}}{{2}^{n+1}}$+$\frac{5}{2}$•$\frac{{a}_{n}}{{2}^{n}}$-$\frac{n}{2}$,
∴$\frac{{a}_{n+1}}{{2}^{n+1}}$+$\frac{5}{2}$•$\frac{{a}_{n}}{{2}^{n}}$-$\frac{n}{2}$=$\frac{{a}_{n}}{{2}^{n}}$+$\frac{5}{2}$•$\frac{{a}_{n-1}}{{2}^{n-1}}$-$\frac{n-1}{2}$=…=$\frac{{a}_{2}}{{2}^{2}}$+$\frac{5}{2}$•$\frac{{a}_{1}}{2}$-$\frac{1}{2}$=$\frac{1}{2}$,
∴$\frac{{a}_{n+1}}{{2}^{n+1}}$+$\frac{5}{2}$•$\frac{{a}_{n}}{{2}^{n}}$=$\frac{n+1}{2}$,
∴$\frac{{a}_{n+1}}{{2}^{n+1}}$-$\frac{n+1}{7}$-$\frac{5}{49}$=-$\frac{5}{2}$($\frac{{a}_{n}}{{2}^{n}}$-$\frac{n}{7}$-$\frac{5}{49}$),
又∵$\frac{{a}_{1}}{2}$-$\frac{1}{7}$-$\frac{5}{49}$=$\frac{1}{2}$-$\frac{1}{7}$-$\frac{5}{49}$=$\frac{25}{98}$,
∴数列{$\frac{{a}_{n}}{{2}^{n}}$-$\frac{n}{7}$-$\frac{5}{49}$}是首项为$\frac{25}{98}$、公比为-$\frac{5}{2}$的等比数列,
∴$\frac{{a}_{n}}{{2}^{n}}$-$\frac{n}{7}$-$\frac{5}{49}$=$\frac{25}{98}$•$(-\frac{5}{2})^{n-1}$,
∴数列{an}的通项公式an=[$\frac{n}{7}$+$\frac{5}{49}$+(-1)n-1•$\frac{{5}^{n+1}}{49•{2}^{n}}$]•2n

点评 本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网