题目内容
(本小题满分12分)如图,四棱锥P—ABCD中,底面ABCD为菱形,PD=AD,∠DAB="60°," PD⊥底面ABCD.
(1)求作平面PAD与平面PBC的交线,并加以证明;
(2)求PA与平面PBC所成角的正弦值;
(3)
求平面PAD与平面PBC所成锐二面角的正切值。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232010516904480.jpg)
(1)求作平面PAD与平面PBC的交线,并加以证明;
(2)求PA与平面PBC所成角的正弦值;
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201051675156.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232010516904480.jpg)
文)(1)
底面ABCD为菱形,
,
PD⊥底面ABCD,
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201052002589.png)
,
(4分)
(2)设PD=AD=1,设A到平面PBC的距离为h,则由题意PA=PB=PC=
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232010520651094.png)
在等腰
PBC中,可求![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232010520961413.png)
,
,可得h=
,
(12分)
(理)(1)过P作BC的平行线L即为所求。(2分)因为BC∥A
D,
,
,所以BC∥平面PAD,因为平面PAD
平面PBC=L,所以BC∥L (5分)
(2)设PD=AD=1,由题意可知,PA=PB=PC=
,取BC中点M,连PM、DM,则PM⊥BC,因为PD⊥BC,又BC∥L,所以
为所求。(8分)在
中,
(12分)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201051722222.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201051737586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201051722222.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201051987568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201052002589.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201052018697.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201052034565.png)
(2)设PD=AD=1,设A到平面PBC的距离为h,则由题意PA=PB=PC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201052049336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232010520651094.png)
在等腰
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201052080318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232010520961413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201052190704.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232010523921005.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201052408463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232010524861385.png)
(理)(1)过P作BC的平行线L即为所求。(2分)因为BC∥A
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201052689163.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201052798716.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201053126570.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201053188259.png)
(2)设PD=AD=1,由题意可知,PA=PB=PC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201052049336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201053219584.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201053235594.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232010532661450.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目