ÌâÄ¿ÄÚÈÝ
4£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=1£¬an+1=$\frac{1}{2}$an+$\frac{1}{{a}_{n}}$£¬Éèbn=$\frac{2}{\sqrt{{{a}_{n}}^{2}-2}}$£¬cn=$\frac{4{a}_{n}}{{{a}_{n}}^{2}-2}$£®£¨1£©ÇóÖ¤£º¶ÔÒ»ÇÐn¡ÊN*£¬n¡Ý2£¬an£¾$\sqrt{2}$£®
£¨2£©ÇóÖ¤£º¶ÔÒ»ÇÐn¡ÊN*£¬n¡Ý2£¬bnÓëcn¶¼ÊÇÕýÕûÊý£®
·ÖÎö £¨1£©ÔËÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£¬Ê×ÏÈÑéÖ¤n=2µÄÇé¿ö£¬¼ÙÉèn=k£¬½áÂÛ³ÉÁ¢£¬ÔÙÓɺ¯Êýy=ax+$\frac{b}{x}$µÄÐÔÖÊ£¬¿ÉÖ¤n=k+1Ò²³ÉÁ¢£»
£¨2£©ÔËÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£¬Ê×ÏÈÑéÖ¤n=2µÄÇé¿ö£¬¼ÙÉèn=k£¬½áÂÛ³ÉÁ¢£¬ÔÙ½áºÏÌõ¼þ£¬»¯¼òÕûÀí£¬¼´¿ÉµÃµ½n=k+1Ò²³ÉÁ¢£¬½ø¶øµÃÖ¤£®
½â´ð Ö¤Ã÷£º£¨1£©µ±n=2ʱ£¬a2=$\frac{1}{2}$+1=$\frac{3}{2}$£¾$\sqrt{2}$£¬³ÉÁ¢£»
¼ÙÉèn=kʱ£¬ak£¾$\sqrt{2}$³ÉÁ¢£»
µ±n=k+1ʱ£¬ak+1=$\frac{1}{2}$ak+$\frac{1}{{a}_{k}}$£¾$\frac{1}{2}$•$\sqrt{2}$+$\frac{1}{\sqrt{2}}$=$\sqrt{2}$£¬
Ôòn=k+1ʱ£¬Ò²³ÉÁ¢£®
¶ÔÒ»ÇÐn¡ÊN*£¬n¡Ý2£¬an£¾$\sqrt{2}$£®
£¨2£©µ±n=2ʱ£¬b2=$\frac{2}{\sqrt{{{a}_{2}}^{2}-2}}$=$\frac{2}{\sqrt{\frac{9}{4}-2}}$=4£¬
c2=$\frac{4{a}_{2}}{{{a}_{2}}^{2}-2}$=$\frac{4¡Á\frac{3}{2}}{\frac{9}{4}-2}$=24£¬b2Óëc2¶¼ÊÇÕýÕûÊý£»
¼ÙÉèn=k£¬bkÓëck¶¼ÊÇÕýÕûÊý£¬
¼´ÓÐn=k+1ʱ£¬bk+1=$\frac{2}{\sqrt{{{a}_{k+1}}^{2}-2}}$=$\frac{2}{\sqrt{£¨\frac{1}{2}{a}_{k}+\frac{1}{{a}_{k}}£©^{2}-2}}$=$\frac{2}{\frac{1}{2}{a}_{k}-\frac{1}{{a}_{k}}}$
=$\frac{4{a}_{k}}{{{a}_{k}}^{2}-2}$=ckΪÕýÕûÊý£¬
ck+1=$\frac{4{a}_{k+1}}{{{a}_{k+1}}^{2}-2}$=$\frac{8{a}_{k}£¨{{a}_{k}}^{2}+2£©}{£¨{{a}_{k}}^{2}-2£©^{2}}$=$\frac{4{a}_{k}}{{{a}_{k}}^{2}-2}$•$\frac{2£¨{{a}_{k}}^{2}+2£©}{{{a}_{k}}^{2}-2}$
=ck•2£¨1+$\frac{4}{{{a}_{k}}^{2}-2}$£©=ck•2£¨1+bk2£©£¬¼´ÎªÕýÕûÊý£®
ÔòÓжÔÒ»ÇÐn¡ÊN*£¬n¡Ý2£¬bnÓëcn¶¼ÊÇÕýÕûÊý£®
µãÆÀ ±¾Ì⿼²éÊýѧ¹éÄÉ·¨µÄÔËÓã¬Í¬Ê±¿¼²é²»µÈʽµÄÐÔÖʺͻ¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
¢ÙÓÐÎåÖÖ¸ø¶¨µÄÑÕÉ«¹©Ñ¡Óã»
¢Úÿ¸öСԲͿһÖÖÑÕÉ«£¬ÇÒͼÖб»Í¬Ò»ÌõÏ߶ÎÏàÁ¬Á½¸öСԲ²»ÄÜÍ¿ÏàͬµÄÑÕÉ«£®
ÈôµçÄÔÍê³ÉÿÖÖÍ¿É«·½°¸µÄ¿ÉÄÜÐÎÏàͬ£¬ÔòÖ´ÐÐÒ»´Î³ÌÐòºó£¬Í¼ÖиպÃÓÐËÄÖÖ²»Í¬µÄÑÕÉ«µÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£® | $\frac{9}{16}$ | B£® | $\frac{3}{8}$ | C£® | $\frac{18}{25}$ | D£® | $\frac{12}{25}$ |
A£® | ¶Û½ÇÈý½ÇÐÎ | B£® | Èñ½ÇÈý½ÇÐÎ | C£® | Ö±½ÇÈý½ÇÐÎ | D£® | ÐÎ×´²»ÄÜÈ·¶¨ |