题目内容
2.设集合A={x|x2+2x-3>0},集合B={x|x2-2ax-1≤0,a>0}.若A∩B中恰含有一个整数,则实数a的取值范围是[$\frac{3}{4}$,$\frac{4}{3}$).分析 求出A中不等式的解集确定出A,由A与B交集中恰有一个整数,求出a的范围即可.
解答 ,解:由A中不等式变形得:(x-1)(x+3)>0,
解得:x<-3或x>1,即A={x|x<-3或x>1},
函数y=f(x)=x2-2ax-1的对称轴为x=a>0,f(-3)=6a+8<0,
由对称性可得,要使A∩B恰有一个整数,
即这个整数解为2,
∴f(2)≤0且f(3)>0,
即$\left\{\begin{array}{l}{4-4a-1≤0}\\{9-6a-1>0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a≥\frac{3}{4}}\\{a<\frac{4}{3}}\end{array}\right.$,即$\frac{3}{4}$≤a<$\frac{4}{3}$,
则a的取值范围为[$\frac{3}{4}$,$\frac{4}{3}$).
故答案为:[$\frac{3}{4}$,$\frac{4}{3}$)
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
12.已知两个等差数列{an}和{bn}的前n项和分别为Sn和Tn,且$\frac{S_n}{T_n}$=$\frac{2n+5}{n+3}$,则$\frac{a_5}{b_5}$为( )
A. | $\frac{13}{7}$ | B. | $\frac{15}{8}$ | C. | $\frac{23}{12}$ | D. | $\frac{25}{13}$ |
10.已知F1和F2分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的两个焦点,A和B是以O为圆心,以|OF1|为半径的圆与该双曲线左支的两个交点,且△F2AB是等边三角形,则该双曲线的离心率为( )
A. | $\frac{{\sqrt{3}+1}}{2}$ | B. | $\sqrt{3}-1$ | C. | $\sqrt{3}+1$ | D. | 2 |
17.已知向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(sinα,cosα),且$\overrightarrow{a}∥\overrightarrow{b}$,则tanα=( )
A. | $\frac{3}{4}$ | B. | -$\frac{3}{4}$ | C. | $\frac{4}{3}$ | D. | -$\frac{4}{3}$ |
14.要得到函数y=sin(-$\frac{1}{3}$x)的图象,只需将函数y=sin(-$\frac{1}{3}$x+$\frac{π}{6}$)的图象( )
A. | 向左平移$\frac{π}{2}$个单位 | B. | 向右平移$\frac{π}{2}$个单位 | ||
C. | 向左平移$\frac{π}{6}$个单位 | D. | 向右平移$\frac{π}{6}$个单位 |