题目内容
【题目】如图所示,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,
求证:(1)GH∥面ABC
(2)平面EFA1∥平面BCHG.
【答案】(1)见解析(2)见解析
【解析】
(1) 根据三角形中位线定理以及三棱柱的性质可推导出,由线面平行的判定定理能证明面;(2)由三角形中位线定理推导出,由平行四边形的性质可得,从而可证明平面平面.
(1)∵在三棱柱ABCA1B1C1中,
E,F,G,H分别是AB,AC,A1B1,A1C1的中点,
∴GH∥B1C1∥BC,
∵GH平面ABC,BC平面ABC,
∴GH∥面ABC.
(2)∵在三棱柱ABCA1B1C1中,
E,F,G,H分别是AB,AC,A1B1,A1C1的中点,
∴EF∥BC,A1GBE,
∴四边形BGA1E是平行四边形,∴A1E∥BG,
∵A1E∩EF=E,BG∩BC=B,
A1E,EF平面EFA1,BG,BC平面BCHG,
∴平面EFA1∥平面BCHG.
练习册系列答案
相关题目