题目内容
【题目】已知a>0且满足不等式22a+1>25a﹣2.
(1)求实数a的取值范围;
(2)求不等式loga(3x+1)<loga(7﹣5x);
(3)若函数y=loga(2x﹣1)在区间[1,3]有最小值为﹣2,求实数a的值.
【答案】(1)0<a<1; (2)(,); (3) .
【解析】
(1)根据指数函数的单调性即可求解;
(2)根据对数的单调性即可求解
(3)根据对数的单调性在区间[1,3]有最小值为﹣2,可得y=loga5=﹣2,可得a的值.
(1)∵22a+1>25a﹣2.
∴2a+1>5a﹣2,即3a<3,∴a<1,
∵a>0,a<1,∴0<a<1.
(2)由(1)知0<a<1,
∵loga(3x+1)<loga(7﹣5x).
∴等价为,即,∴,即不等式的解集为(,).
(3)∵0<a<1,
∴函数y=loga(2x﹣1)在区间[1,3]上为减函数,
∴当x=3时,y有最小值为﹣2,即loga5=﹣2,∴a﹣2==5,解得a=.
练习册系列答案
相关题目