题目内容
如图,在五棱锥
中,
底面
,
,
,
。
(1)证明:
平面
;
(2)求二面角
的余弦值。![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231343240621220.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134323906453.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134323921240.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134323937424.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134323952539.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134323968439.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134323984685.gif)
(1)证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134323999250.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324015252.gif)
(2)求二面角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324046303.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231343240621220.gif)
(1)见解析 (2) ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324077243.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324077243.gif)
(1)证明:由题意,
是等腰三角形,
,所以
. 又
,∴
,所以
.∵
底面
,
底面
,
∴
,又
,∴
平面
.…………………………………5分
(2)解:易证
,以
为原点,AB、AD、AS所在直线分别为
轴、
轴、
轴,建立空间直角坐标系(如图),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231343246081397.gif)
则
,
设平面SBC的法向量为
,设平面SCD的法向量为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324654480.gif)
由
,令
,则
,
同理可求,
∴
,
∴二面角
的余弦值为
.………………13分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324093391.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324108464.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324124445.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324155477.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324171454.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324186415.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134323921240.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134323937424.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324436249.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134323937424.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324452407.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324483351.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134323999250.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324015252.gif)
(2)解:易证
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324530486.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324545195.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324561183.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324576192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324592178.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231343246081397.gif)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231343246231144.gif)
设平面SBC的法向量为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324639461.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324654480.gif)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231343247171343.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324732217.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324748474.gif)
同理可求,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324764490.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231343247791077.gif)
∴二面角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324046303.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134324077243.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目