题目内容

设函数f(x)=
2x,x≤0
log2x,x>0
,【若对任意给定的y∈(2,+∞),都存在唯一的x∈R,满足f(f(x))=2a2y2+ay,则正实数a的最小值是
 
考点:分段函数的应用
专题:
分析:此题的突破口在于如何才会存在唯一的x满足条件,结合f(x)的值域范围或者图象,易知只有在f(x)的自变量与因变量存在一一对应的关系时,即只有当f(x)>1时,才会存在一一对应.
解答:解:根据f(x)的函数,我们易得出其值域为:R
又∵f(x)=2x,(x≤0)时,值域为(0,1];f(x)=log2x,(x>0)时,其值域为R
∴可以看出f(x)的值域为(0,1]上有两个解,要想f(f(x))=2a2y2+ay,在y∈(2,+∞)上只有唯一的x∈R满足,
必有f(f(x))>1 (因为2a2y2+ay>0)
所以:f(x)>2
解得:x>4,
当 x>4时,x与f(f(x))存在一一对应的关系
∴2a2y2+ay>1,y∈(2,+∞),且a>0
所以有:(2ay-1)(ay+1)>0
解得:y>
1
2a
或者y<-
1
a
(舍去)
1
2a
≤2
∴a≥
1
4

故答案为:
1
4
点评:本题可以把2a2y2+ay当作是一个数,然后在确定数的大小后再把它作为一个关于y的函数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网