题目内容

已知函数f(x)=-2x3-x,若x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值(  )
A、大于零B、小于零C、等于零D、大于零或小于零
考点:奇偶性与单调性的综合
专题:函数的性质及应用
分析:判断函数的奇偶性和单调性,根据函数奇偶性和单调性的性质即可得到结论.
解答:解:∵f(x)=-2x3-x,
∴f(-x)=2x3+x=-(-2x3-x)=-f(x),
∴函数f(x)是奇函数,且f(x)=-2x3-x在R上为减函数,
∵x1+x2>0,x2+x3>0,x3+x1>0,
∴x1>-x2,x2>-x3,x3>-x1
则f(x1)<f(-x2),f(x2)<f(-x3),f(x3)<f(-x1),
即f(x1)<-f(x2),f(x2)<-f(x3),f(x3)<-f(x1),
∴不等式两边相加得f(x1)+f(x2)+f(x3)<-[f(x1)+f(x2)+f(x3)],
即f(x1)+f(x2)+f(x3)<0.
故选:B.
点评:本题主要函数单调性和奇偶性的应用,根据条件先判断函数的奇偶性和单调性是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网