题目内容
【题目】秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法,对于求一个n次多项式函数fn(x)=anxn+an﹣1xn﹣1+…+a1x+a0的具体函数值,运用常规方法计算出结果最多需要n次加法和 乘法,而运用秦九韶算法由内而外逐层计算一次多项式的值的算法至多需要n次加法和n次乘法.对于计算机来说,做一次乘法运算所用的时间比做一次加法运算要长得多,所以此算法极大地缩短了CPU运算时间,因此即使在今天该算法仍具有重要意义.运用秦九韶算法计算f(x)=0.5x6+4x5﹣x4+3x3﹣5x当x=3时的值时,最先计算的是( )
A.﹣5×3=﹣15
B.0.5×3+4=5.5
C.3×33﹣5×3=66
D.0.5×36+4×35=1336.6
【答案】B
【解析】解:f(x)=0.5x6+4x5﹣x4+3x3﹣5x=(((((0.5x+4)x﹣1)x+3)x+0)x﹣5)x,
然后由内向外计算,最先计算的是0.5×3+4=5.5,
故选:B.
【考点精析】根据题目的已知条件,利用秦九韶算法的相关知识可以得到问题的答案,需要掌握求多项式的值时,首先计算最内层括号内依次多项式的值,即v1=anx+an-1然后由内向外逐层计算一次多项式的值,把n次多项式的求值问题转化成求n个一次多项式的值的问题.
练习册系列答案
相关题目