题目内容

20.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=2$\sqrt{3}$,则PC与平面PAD所成角的大小为45°.

分析 由PA⊥平面ABCD,即可得到CD⊥PA,CD⊥AD,从而根据线面垂直的判定定理即可得到CD⊥平面PAD,从而∠CPD便是PC和平面PAD所成角,根据已知的边长度即可求得CD=PD,从而得出∠CPD=45°.

解答 解:PA⊥平面ABCD,CD?平面ABCD;
∴CD⊥PA;
又CD⊥AD,AD∩PA=A;
∴CD⊥平面PAD;
∴∠CPD是直线PC和平面PAD所成角;
PD=$\sqrt{P{A}^{2}+A{D}^{2}}$=2$\sqrt{2}$,CD=AB=$\sqrt{B{D}^{2}-A{D}^{2}}=2\sqrt{2}$;
∴∠CPD=45°.
故答案为:45°.

点评 考查线面垂直的性质及判定定理,线面角的概念及求法,直角三角形边的关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网