题目内容
【题目】已知函数f(x)=.(a>0)
(1)若a=1,证明:y=f(x)在R上单调递减;
(2)当a>1时,讨论f(x)零点的个数.
【答案】见解析
【解析】(1)证明:当x≥1时,f′(x)=-1≤0,f(x)在[1,+∞)上单调递减,f(x)≤f(1)=0;
当x<1时,f′(x)=ex-1-1<0,f(x)在(-∞,1)上单调递减,且此时f(x)>0.
所以y=f(x)在R上单调递减.
(2)若x≥a,则f′(x)=-a≤-a<0(a>1),
所以此时f(x)单调递减,令g(a)=f(a)=ln a-a2+1,
则g′(a)=-2a<0,所以f(a)=g(a)<g(1)=0,
即f(x)≤f(a)<0,故f(x)在[a,+∞)上无零点.
当x<a时,f′(x)=ex-1+a-2,
①当a>2时,f′(x)>0,f(x)单调递增,
又f(0)=e-1>0,f<0,所以此时f(x)在上有一个零点.
②当a=2时,f(x)=ex-1,此时f(x)在(-∞,2)上没有零点.
③当1<a<2时,令f′(x0)=0,解得x0=ln(2-a)+1<1<a,所以f(x)在(-∞,x0)上单调递减,在(x0,a)上单调递增.
f(x0)=e+(a-2)x0=e (1-x0)>0,
所以此时f(x)没有零点.
综上,当1<a≤2时,f(x)没有零点;当a>2时,f(x)有一个零点.
【题目】电视剧《人民的名义》中有一个低矮的接待上访服务窗口,假设群众办理业务所需的时间互相独立,且都是10分钟的整数倍,对以往群众办理业务所需的时间统计结果如下:
办理业务所需的时间(分) | 10 | 20 | 30 | 40 | 50 |
频率 | 0.3 | 0.3 | 0.2 | 0.1 | 0.1 |
假设排队等待办理业务的群众不少于3人,从第一个群众开始办理业务时开始计时.
(Ⅰ)估计第三个群众恰好等待40分钟开始办理业务的概率;
(Ⅱ)表示至第20分钟末已办理完业务的群众人数,求的分布列及数学期望.