题目内容
【题目】已知向量a=,b=,且x∈.
(1)求a·b及|a+b|;
(2)若f(x)=a·b-2λ|a+b|的最小值是-,求λ的值.
【答案】见解析
【解析】解 (1)a·b=cos cos -sin sin =cos 2x,
|a+b|=
==2,
因为x∈,所以cos x≥0,
所以|a+b|=2cos x.
(2)由(1),可得f(x)=a·b-2λ|a+b|=cos 2x-4λcos x,
即f(x)=2(cos x-λ)2-1-2λ2.
因为x∈,所以0≤cos x≤1.
①当λ<0时,当且仅当cos x=0时,f(x)取得最小值-1,这与已知矛盾;
②当0≤λ≤1时,当且仅当cos x=λ时,f(x)取得最小值-1-2λ2,由已知得-1-2λ2=-,解得λ=;
③当λ>1时,当且仅当cos x=1时,f(x)取得最小值1-4λ,由已知得1-4λ=-,解得λ=,这与λ>1相矛盾;综上所述λ=.
练习册系列答案
相关题目