题目内容
【题目】已知函数f(x)=-2x+m,其中m为常数.
(1)求证:函数f(x)在R上是减函数;
(2)当函数f(x)是奇函数时,求实数m的值.
【答案】(1)见解析;(2).
【解析】试题分析:(1)先作差,确定差的符号,结合减函数定义进行证明(2)由奇函数定义得f(-x)=-f(x),代入化简可得实数m的值.
试题解析:(1)证明:设x1,x2是R上的任意两个不相等的实数,且x1<x2,则f(x1)-f(x2)=(-2x1+m)-(-2x2+m)=2(x2-x1).∵x1<x2,∴x2-x1>0.∴f(x1)>f(x2).
∴函数f(x)在R上是减函数.
(2)解:∵函数f(x)是奇函数,∴对任意x∈R,有f(-x)=-f(x).∴2x+m=-(-2x+m).∴m=0.
练习册系列答案
相关题目
【题目】某中学将100名高二文科生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲、乙两个班进行教改实验.为了了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为“成绩优秀”.
(Ⅰ)根据频率分布直方图填写下面2×2列联表;
(Ⅱ)判断能否在犯错误的概率不超过0.05的前提下认为:“成绩优秀”与教学方式有关?
甲班(A方式) | 乙班(B方式) | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
附:.
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |