题目内容
【题目】已知椭圆C:(a>b>0)的两个焦点分别为F1(-,0)、F2(,0).点M(1,0)与椭圆短轴的两个端点的连线相互垂直.
(1)求椭圆C的方程;
(2)已知点N的坐标为(3,2),点P的坐标为(m,n)(m≠3).过点M任作直线l与椭圆C相交于A、B两点,设直线AN、NP、BN的斜率分别为k1、k2、k3,若k1+k3=2k2,试求m,n满足的关系式.
【答案】(1);(2)m-n-1=0
【解析】
试题(1)利用M与短轴端点构成等腰直角三角形,可求得b的值,进而得到椭圆方程;(2)设出过M的直线l的方程,将l与椭圆C联立,得到两交点坐标关系,然后将k1+k3表示为直线l斜率的关系式,化简后得k1+k3=2,于是可得m,n的关系式.
试题解析:(1)由题意,c=,b=1,所以a=
故椭圆C的方程为
(2)①当直线l的斜率不存在时,方程为x=1,代入椭圆得,y=±
不妨设A(1,),B(1,-)
因为k1+k3==2
又k1+k3=2k2,所以k2=1
所以m,n的关系式为=1,即m-n-1=0
②当直线l的斜率存在时,设l的方程为y=k(x-1)
将y=k(x-1)代入,
整理得:(3k2+1)x2-6k2x+3k2-3=0
设A(x1,y1),B(x2,y2),则
又y1=k(x1-1),y2=k(x2-1)
所以k1+k3=
=
=
=
==2
所以2k2=2,所以k2==1
所以m,n的关系式为m-n-1=0
综上所述,m,n的关系式为m-n-1=0.
【题目】某市调硏机构对该市工薪阶层对“楼市限购令”态度进行调查,抽调了50名市民,他们月收入频数分布表和对“楼市限购令”赞成人数如下表:
月收入(单位:百元) | ||||||
频数 | 5 | 10 | 5 | 5 | ||
频率 | 0.1 | 0.2 | 0.1 | 0.1 | ||
赞成人数 | 4 | 8 | 12 | 5 | 2 | 1 |
(1)若所抽调的50名市民中,收入在的有15名,求,,的值,并完成频率分布直方图.
(2)若从收入(单位:百元)在的被调查者中随机选取2人进行追踪调查,选中的2人中恰有人赞成“楼市限购令”,求的分布列与数学期望.
(3)从月收入频率分布表的6组市民中分别随机抽取3名市民,恰有一组的3名市民都不赞成“楼市限购令”,根据表格数据,判断这3名市民来自哪组的可能性最大?请直接写出你的判断结果.
【题目】某市环保部门为了让全市居民认识到冬天烧煤取暖对空气数值的影响,进而唤醒全市人民的环保节能意识。对该市取暖季烧煤天数与空气数值不合格的天数进行统计分析,得出下表数据:
(天) | 9 | 8 | 7 | 5 | 4 |
(天) | 7 | 6 | 5 | 3 | 2 |
(1)以统计数据为依据,求出关于的线性回归方程;
(2)根据(1)求出的线性回归方程,预测该市烧煤取暖的天数为20时空气数值不合格的天数.
参考公式:,.