题目内容
【题目】已知函数,.
(1)求曲线在点处的切线方程;
(2)求函数的单调区间;
(3)判断函数的零点个数.
【答案】(1)(2)答案见解析(3)答案见解析
【解析】
(1)设曲线在点,处的切线的斜率为,可求得,,利用直线的点斜式方程即可求得答案;
(2)由(Ⅰ)知,,分时,,三类讨论,即可求得各种情况下的的单调区间为;
(3)分与两类讨论,即可判断函数的零点个数.
(1),
,
设曲线在点,处的切线的斜率为,
则,
又,
曲线在点,处的切线方程为:,即;
(2)由(1)知,,
故当时,,所以在上单调递增;
当时,,;,,;
的递减区间为,递增区间为,;
当时,同理可得的递增区间为,递减区间为,;
综上所述,时,单调递增为,无递减区间;
当时,的递减区间为,递增区间为,;
当时,的递增区间为,递减区间为,;
(3)当时,恒成立,所以无零点;
当时,由,得:,只有一个零点.
练习册系列答案
相关题目