题目内容
【题目】如图,在四棱锥中,底面为菱形,底面,.
(1)求证:平面;
(2)若直线与平面所成的角为,求平面与平面所成锐二面角的余弦值.
【答案】(1)证明见解析(2)
【解析】
(1)由底面为菱形,得,再由底面,可得,结合线面垂直的判定可得平面;
(2)以点为坐标原点,以所在直线及过点且垂直于平面的直线分别为轴建立空间直角坐标系,分别求出平面与平面的一个法向量,由两法向量所成角的余弦值可得平面与平面所成锐二面角的余弦值.
(1)证明:底面为菱形,,
底面,平面,
又,平面,
平面;
(2)解:,,为等边三角形,
.
底面,是直线与平面所成的角为,
在中,由,解得.
如图,以点为坐标原点,以所在直线及过点且垂直于平面的直线分别为轴
建立空间直角坐标系.
则,,,,.
,,,.
设平面与平面的一个法向量分别为,.
由,取,得;
由,取,得.
.
平面与平面所成锐二面角的余弦值为.
练习册系列答案
相关题目
【题目】对某产品1至6月份销售量及其价格进行调查,其售价x和销售量y之间的一组数据如下表所示:
月份i | 1 | 2 | 3 | 4 | 5 | 6 |
单价(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
销售量(件) | 11 | 10 | 8 | 6 | 5 | 14 |
(1)根据1至5月份的数据,求出y关于x的回归直线方程;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问所得回归直线方程是否理想?
(3)预计在今后的销售中,销售量与单价仍然服从(1)中的关系,且该产品的成本是2.5元/件,为获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本).
参考公式:回归方程,其中.
参考数据:,.