题目内容
【题目】某市调硏机构对该市工薪阶层对“楼市限购令”态度进行调查,抽调了50名市民,他们月收入频数分布表和对“楼市限购令”赞成人数如下表:
月收入(单位:百元) | ||||||
频数 | 5 | 10 | 5 | 5 | ||
频率 | 0.1 | 0.2 | 0.1 | 0.1 | ||
赞成人数 | 4 | 8 | 12 | 5 | 2 | 1 |
(1)若所抽调的50名市民中,收入在的有15名,求,,的值,并完成频率分布直方图.
(2)若从收入(单位:百元)在的被调查者中随机选取2人进行追踪调查,选中的2人中恰有人赞成“楼市限购令”,求的分布列与数学期望.
(3)从月收入频率分布表的6组市民中分别随机抽取3名市民,恰有一组的3名市民都不赞成“楼市限购令”,根据表格数据,判断这3名市民来自哪组的可能性最大?请直接写出你的判断结果.
【答案】(1),频率分布直方图见解析;(2)分布列见解析,;(3)来自的可能性最大.
【解析】
(1)由频率和为可知,根据求得,从而计算得到频数,补全频率分布表后可画出频率分布直方图;
(2)首先确定的所有可能取值,由超几何分布概率公式可计算求得每个取值对应的概率,由此得到分布列;根据数学期望的计算公式可求得期望;
(3)根据中不赞成比例最大可知来自的可能性最大.
(1)由频率分布表得:,即.
收入在的有名,,,,
则频率分布直方图如下:
(2)收入在中赞成人数为,不赞成人数为,
可能取值为,
则;;,
的分布列为:
.
(3)来自的可能性更大.
【题目】对某产品1至6月份销售量及其价格进行调查,其售价x和销售量y之间的一组数据如下表所示:
月份i | 1 | 2 | 3 | 4 | 5 | 6 |
单价(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
销售量(件) | 11 | 10 | 8 | 6 | 5 | 14 |
(1)根据1至5月份的数据,求出y关于x的回归直线方程;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问所得回归直线方程是否理想?
(3)预计在今后的销售中,销售量与单价仍然服从(1)中的关系,且该产品的成本是2.5元/件,为获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本).
参考公式:回归方程,其中.
参考数据:,.