题目内容

7.已知函数f(x)=$\frac{{{2^{2x}}}}{{2+{2^{2x}}}}$
(1)求$f({\frac{1}{2}})$;
(2)求f(x)+f(1-x)的值;
(3)求$f({\frac{1}{100}})+f({\frac{2}{100}})+f({\frac{3}{100}})+…+f({\frac{98}{100}})+f({\frac{99}{100}})的值$.

分析 (1)利用函数的解析式直接求解即可.
(2)代入函数的解析式化简求解即可.
(3)利用(2)的结果化简求解即可.

解答 解:(1)$f({\frac{1}{2}})$=$\frac{{2}^{2×\frac{1}{2}}}{2+{2}^{2×\frac{1}{2}}}$=$\frac{1}{2}$;
(2)f(x)+f(1-x)=$\frac{{2}^{2x}}{2+{2}^{2x}}$+$\frac{{2}^{2-2x}}{2+{2}^{2-2x}}$=$\frac{{2}^{2x}}{2+{2}^{2x}}$+$\frac{{(2}^{2-2x})•{2}^{2x}}{(2+{2}^{2-2x}){2}^{2x}}$=$\frac{{2}^{2x}}{2+{2}^{2x}}$+$\frac{4}{{2•2}^{2x}+4}$=1.
(3)由(2)可得:$f(\frac{1}{100})+f(\frac{2}{100})+f(\frac{3}{100})+…+f(\frac{98}{100})+f(\frac{99}{100})$=$\frac{99}{2}$.

点评 本题考查函数的解析式的应用,函数值的求法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网