题目内容

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,若 (acosB+bcosA)=2csinC,a+b=4,且△ABC的面积的最大值为 ,则此时△ABC的形状为(
A.锐角三角形
B.直线三角形
C.等腰三角形
D.正三角形

【答案】C
【解析】解:∵ (acosB+bcosA)=2csinC, ∴ (sinAcosB+sinBcosA)=2sin2C,
sinC=2sin2C,且sinC>0,
∴sinC=
∵a+b=4,可得:4≥2 ,解得:ab≤4,(当且仅当a=b=2成立)
∵△ABC的面积的最大值SABC= absinC≤ ×4× =
∴a=b=2,
∴则此时△ABC的形状为等腰三角形.
故选:C.
【考点精析】根据题目的已知条件,利用正弦定理的定义的相关知识可以得到问题的答案,需要掌握正弦定理:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网