题目内容
【题目】春节是旅游消费旺季,某大型商场通过对春节前后20天的调查,得到部分日经济收入Q与这20天中的第x天(x∈N+)的部分数据如表:
天数x(天) | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
日经济收入Q(万元) | 154 | 180 | 198 | 208 | 210 | 204 | 190 |
(1)根据表中数据,结合函数图象的性质,从下列函数模型中选取一个最恰当的函数模型描述Q与x的变化关系,只需说明理由,不用证明. ①Q=ax+b,②Q=﹣x2+ax+b,③Q=ax+b,④Q=b+logax.
(2)结合表中的数据,根据你选择的函数模型,求出该函数的解析式,并确定日经济收入最高的是第几天;并求出这个最高值.
【答案】
(1)解:由提供的数据知道,描述宾馆日经济收入Q与天数的变化关系的函数不可能为常数函数,从而用四个中的任意一个进行描述时都应有,
而Q=at+b,Q=ax+b,Q=b+logax三个函数均为单调函数,这与表格所提供的数据不符合,
∴选取二次函数进行描述最恰当;
将(3,154)、(5,180)代入Q=﹣x2+ax+b,
可得 ,解得a=21,b=100.
∴Q=﹣x2+21x+100,(1≤x≤20,x∈N*)
(2)解:Q=﹣x2+21x+100=﹣(t﹣ )2+ ,
∵1≤x≤20,x∈N*,
∴t=10或11时,Q取得最大值210万元
【解析】(1)由提供的数据知道,描述宾馆日经济收入Q与天数的变化关系的函数不可能为常数函数,也不可能是单调函数,故选取二次函数Q=﹣x2+ax+b进行描述,将(3,154)、(5,180)代入Q=﹣x2+ax+b,代入Q,即得函数解析式;(2)由二次函数的图象与性质,利用配方法可求取最值.
练习册系列答案
相关题目