题目内容
【题目】在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点.曲线的极坐标方程为.
(1)求直线的普通方程与曲线的直角坐标方程;
(2)过点作直线的垂线交曲线于两点(在轴上方),求的值.
【答案】(1),;(2)
【解析】
(1)利用代入法消去参数可得到直线的普通方程,利用公式可得到曲线的直角坐标方程;(2)设直线的参数方程为(为参数),
代入得,根据直线参数方程的几何意义,利用韦达定理可得结果.
(1)由题意得点的直角坐标为,将点代入得
则直线的普通方程为.
由得,即.
故曲线的直角坐标方程为.
(2)设直线的参数方程为(为参数),
代入得.
设对应参数为,对应参数为.则,,且.
.
练习册系列答案
相关题目