题目内容
【题目】已知函数有两个极值点, ().
(1)求实数的取值范围;
(2)设,若函数的两个极值点恰为函数的两个零点,当时,求的最小值.
【答案】(1).(2).
【解析】试题分析:(I)求出函数f(x)的导数,可得方程x2-ax+1=0有两个不相等的正根,即可求出a的范围;(II)对函数g(x)求导数,利用极值的定义得出g'(x)=0时存在两正根x1,x2;再利用判别式以及根与系数的关系,结合零点的定义,构造函数,利用导数即可求出函数y的最小值
解析:
(1)的定义域为,
,
令,即,要使在上有两个极值点,
则方程有两个不相等的正根,
则解得,
即.
(2),
由于, 为的两个零点,
即, ,
两式相减得: .
∴,
又,
∴,
故,
设,∵, 为的两根,
∴故,
∴,又,
即,
解得或,
因此,
此时,
,
即函数在单调递减,
∴当时, 取得最小值,
∴.
即所求最小值为.
练习册系列答案
相关题目
【题目】某厂拟用集装箱托运甲、乙两种货物,集装箱的体积、重量、可获利润和托运能力等限制数据列在表中,如何设计甲、乙两种货物应各托运的箱数可以获得最大利润,最大利润是多少?
货物 | 体积箱 | 重量箱 | 利润百元箱 |
甲 | 5 | 2 | 20 |
乙 | 4 | 5 | 10 |
托运限制 | 24 | 13 |
【题目】某仪器经过检验合格才能出厂,初检合格率为:若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为.每台仪器各项费用如表:
项目 | 生产成本 | 检验费/次 | 调试费 | 出厂价 |
金额(元) | 1000 | 100 | 200 | 3000 |
(Ⅰ)求每台仪器能出厂的概率;
(Ⅱ)求生产一台仪器所获得的利润为1600元的概率(注:利润出厂价生产成本检验费调试费);
(Ⅲ)假设每台仪器是否合格相互独立,记为生产两台仪器所获得的利润,求的分布列和数学期望.